
The Ludii Game Description Language is Universal
Dennis J.N.J. Soemers,∗ Éric Piette,† Matthew Stephenson,‡ and Cameron Browne§

∗Department of Advanced Computing Sciences, Maastricht University
Email: dennis.soemers@maastrichtuniversity.nl

†ICTEAM, Université catholique de Louvain
Email: eric.piette@uclouvain.be

‡College of Science and Engineering, Flinders University
Email: matthew.stephenson@flinders.edu.au

§Email: cambolbro@gmail.com

Abstract—There are several different game description lan-
guages (GDLs), each intended to allow wide ranges of arbitrary
games (i.e., general games) to be described in a single higher-level
language than general-purpose programming languages. Games
described in such formats can subsequently be presented as
challenges for automated general game playing agents, which are
expected to be capable of playing any arbitrary game described
in such a language without prior knowledge about the games to
be played. The language used by the Ludii general game system
was previously shown to be capable of representing equivalent
games for any arbitrary, finite, deterministic, fully observable
extensive-form game. In this paper, we prove its universality by
extending this to include finite non-deterministic and imperfect-
information games.

Index Terms—Ludii, game description language, general game
playing

I. INTRODUCTION

General Game Playing (GGP) is a subfield of Artificial
Intelligence (AI) research, in which the challenge is to develop
agents that can successfully play arbitrary games without hu-
man intervention or prior knowledge of exactly which games
are to be played [1]. Implementing such an agent in practice
typically requires the use of a Game Description Language
(GDL); a standardised format such that the rules of any game
can be provided to an agent without having to implement it
directly in a general-purpose programming language.

The GDL that popularised GGP research [2], [3] originated
primarily from Stanford; we refer to it as S-GDL in this paper.
Other systems with GDLs include Regular Boardgames (RBG)
[4] and Ludii [5], [6] for general games, as well as GVGAI
[7], [8] for video games. Aside from facilitating GGP research,
the use of domain-specific languages has also been proposed
for the ease with which they enable the implementation of
custom, targeted testbeds [9].

S-GDL is a relatively low-level logic-based GDL. After
the introduction of an extension to support randomness and
imperfect information [10], it was proven that S-GDL is
universal [11]; any arbitrary finite extensive-form [12] game
can be faithfully represented in a legal S-GDL description.
For the GDL of RBG, this was only proven for the subset of
fully-observable, deterministic games [4]. Similarly, Ludii’s
GDL (L-GDL) was previously only proven to be capable
of representing any finite, deterministic, perfect-information,

alternating-move game, although it did already include basic
support for stochasticity and hidden information (without a
proof of universality) [6].

For S-GDL, the proof of its universality [11] essentially
consists of encoding the entire game tree of any arbitrary
finite extensive-form game in logic statements. L-GDL is a
comparatively higher-level language that primarily consists of
many keywords that game designers and players can readily
understand as common game terms, such as board, piece,
slide, hop, and so on. By design, it is intended to be easier
to read, understand and use for game designers [13], with less
of a focus on including the low-level language elements that
would enable the exhaustive enumeration of all states of an
extensive-form game tree. It has a relatively tightly-enforced
structure, with many enforced restrictions due to strong typing.
In comparison to the lower-level S-GDL with a relatively
flat structure that makes it straightforward to exhaustively
enumerate a complete game tree, this makes it non-trivial to
prove a similar level of generality for L-GDL. Nevertheless,
in this paper we are able to prove the universality of L-
GDL by demonstrating that it can represent the same class
of games as proven by Thielscher [11] for S-GDL, including
games with randomness and hidden information. This provides
a theoretical argument that L-GDL is a suitable, sufficiently
general and powerful description language for problems for
AI research.

The remainder of this paper is structured as follows. Sec-
tion II provides the necessary background information on
extensive-form games and the L-GDL game description lan-
guage. Next, Section III proposes a detailed procedure that, for
any finite extensive-form game G, creates a matching L-GDL
game description for a Ludii game GL. Section IV formally
states a theorem of equivalence for G and GL, and proves the
theorem. In Section V, we provide a brief discussion of two
related topics that may be considered of interest around the
main theorem. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we provide background information on the
standard, universal formalism of extensive-form games, as well
as L-GDL.

A. Extensive-Form Games
Extensive-form games [12] are a standard, general formali-

sation of games in the broad, mathematical sense of the word
(i.e., including many decision-making problems that would not
generally be viewed by most humans as “fun” games). The
formal definition is as follows:

Definition 1. An extensive-form game G is specified by a tuple
G = ⟨P, T ,U , ι,D, I⟩, where:

• P = {1, 2, . . . , k, η} is a finite set of k ≥ 1 players, and
a “nature” player η to model stochastic events.

• T is a finite tree, where every node represents a single
game state s ∈ S. The full set of states S = Sinn ∪ Ster

may be partitioned into a subset of non-terminal states
(inner nodes) Sinn and a subset of terminal states (leaf
nodes) Ster, such that Sinn ∩Ster = ∅. Every branch of
the tree represents a possible transition between states.

• U : Ster 7→ Rk is a payoffs function, such that U(s)
denotes a vector of k real-valued payoffs (for the k
players) for any terminal game state s ∈ Ster.

• ι : Sinn 7→ P is a function such that, for any non-terminal
game state s ∈ Sinn, ι(s) gives the player to play in that
state. Whenever ι(s) ̸= η (i.e., whenever we are not in a
chance node), the player gets to choose which branch to
follow down the tree (it is not permitted to go back up to
the parent node).

• D : {(s, s′) | ι(s) = η, s ∈ Sinn, s
′ ∈ S} 7→ R gives, for

any non-terminal state s controlled by the nature player
η, a probability 0 ≤ D(s, s′) ≤ 1 that the nature player
“selects” s′ as the successor. Note that this must yield
proper probability distributions over successors, i.e. ∀s ∈
{s | ι(s) = η, s ∈ Sinn} :

∑
s′∈S D(s, s′) = 1.

• I : {(p, s) | p ∈ P \ {η}, s ∈ S} 7→ P(S), where
P(S) denotes the powerset of S, gives the information
set I(p, s) of player p for state s (i.e., the set of
states that are indistinguishable from each other from the
perspective of player p when the true state is s).

In this paper, we focus on finite extensive-form games
G, where T is of a finite size. Furthermore, we focus on
sequential-move games, since the function ι gives only a single
player to move per game state s. In theory, this is without
loss of generality, since any simultaneous-move game can be
equivalently modelled as an sequential-move game in which
the effects of moves are delayed until every active player in
a turn has selected their move, and moves within the same
turn are hidden information for all other players [14]. In
practice, Ludii does contain additional support for modelling
simultaneous-move games, but for our theoretical analysis we
do not need this.

B. L-GDL
The basic structure of an L-GDL game description is de-

picted in Fig. 1. It is defined by a grammar [15], automatically
derived from Ludii’s source code [13], which specifies which
keywords (also referred to as ludemes) and types of data
(strings, integers, real numbers, and so on) can or cannot

be used depending on the context. As shown by Fig. 1, a
game description file is expected to describe exactly one game,
which has three top-level entries:

1) players: describes basic data about the players (e.g.,
how many players the game is played by).

2) equipment: describes aspects such as any board(s) or
graph(s) the game is played on, types of pieces or dice
used in the game, and so on.

3) rules: describes rules used to (i) start the game
(generate initial game state, e.g. by placing initial pieces
on a board), (ii) play the game (generate lists of legal
moves), and (iii) end the game (evaluate whether a state
is terminal and determine the outcomes for the players).

Some of these aspects must be specified (such as the play
rules), whereas others may be omitted if unnecessary (e.g.,
start rules are unnecessary in games that start with an empty
board) or if they have a suitable default value (e.g., Ludii
assumes a default number of players of 2 if left unspecified).
L-GDL includes a relatively large set of ludemes, many of
which encapsulate relatively high-level concepts in keywords
that game designers can easily understand and use to write and
read game descriptions. Piette et al. [6] provide more detailed
information on the Ludii system, and Browne et al. [15]
provide a complete, detailed language reference for L-GDL.

A full example description for the game of Tic-Tac-Toe is
presented in Fig. 2. In this example, the equipment used to play
the game is defined as a square board of size 3 (by default
using a tiling of square cells), a “Disc” piece type used by
player 1, and a “Cross” piece type used by player 2. The
subtree of ludemes (move Add (to (sites Empty)))
describes that the set of legal moves consists of moves that
add a piece to any site in the set of empty sites. The subtree
(if (is Line 3) (result Mover Win)) describes
the end condition of this game, which is that the current mover
wins if they complete a contiguous line consisting of 3 of their
pieces.

III. FROM EXTENSIVE-FORM GAMES TO L-GDL

Given any arbitrary finite, extensive-form game G =
⟨P, T ,U , ι,D, I⟩ as defined in Definition 1, we describe how
a corresponding Ludii game GL can be modelled in L-GDL.
In Section IV, we formally state and prove the theorem
that G and GL form equivalent game trees with one-to-one
correspondences between the set of all possible trajectories in
G and the set of all possible trajectories in GL. For simplicity,
and without loss of generality, we make several assumptions
about G:

Assumption 1. G has a unique initial game state s0 as root
node of its game tree.

This assumption is without loss of generality because a
game with multiple distinct possibilities for the initial game
state can be equivalently modelled as a game with a single
chance node as root, with appropriate probabilities assigned
for all the intended “real” initial game states.

(game "Game Name"
(players . . .)
(equipment {

. . .
})
(rules
(start . . .)
(play . . .)
(end . . .)

)
)

Fig. 1. Basic structure of an L-GDL game description for Ludii. Note that
curly braces are used for arrays in L-GDL.

(game "Tic-Tac-Toe"
(players 2)
(equipment {
(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

})
(rules
(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)
)

Fig. 2. Full L-GDL description for the game of Tic-Tac-Toe.

Assumption 2. If the root node of G is not a chance node, the
player labelled as 1 will be the first player to make a move.

This assumption is without loss of generality because there
is otherwise no particular meaning to the labels that are
assigned to players.

The following subsections describe how to fill in the basic
template L-GDL description from Fig. 1 to construct such a
Ludii game GL. The intuition behind our approach is similar
to that of the proof by Piette et al. [6] (which was restricted to
deterministic, perfect-information settings) in the sense that we
explicitly enumerate the entire game tree of G as a graph that
the players play on by moving stones along a path from the
root to any leaf. The most significant change is that, to support
imperfect-information settings, we now use multiple “copies”
of such a graph, with sets of possibly more than one stone
per player moving down each player’s respective tree to track
the information sets (rather than individual states) that players
navigate between. As an example, a full game description file
for the Monty Hall problem, described as explained in the
following five subsections, is provided in the Ludii github
repository.1 This problem involves partial observability and
stochasticity.

A. Defining the Players

For a k-player extensive-form game G with players P =
{1, 2, . . . , k, η}, the set of players in Ludii can simply be
defined as (players k). It is not necessary to explicitly
define the nature player in Ludii. The player labelled as player

1https://github.com/Ludeme/Ludii/blob/master/Common/res/lud/test/
dennis/MontyHallProblemExtensiveForm.lud

1 in Ludii will, by default, be the first player to make a move,
matching Assumption 2.

B. Defining the Equipment
Firstly, we define a neutral Marker0 piece type—which we

use to keep track of the true game state that we are in during
any given trajectory of play—as well as one MarkerP piece
type for every player 1 ≤ P ≤ k—which are used to reveal the
correct information set to each player. This equipment is de-
fined in the equipment({. . . }) section of the game descrip-
tion using (piece "Marker" Neutral) and (piece
"Marker" Each).

Secondly, we construct the game board by defining a graph
that contains (k + 1) × |S| vertices. These may be thought
of as representing (k + 1) copies of the game tree T in G,
with |S| vertices per copy, although it is not necessary to also
include the connectivity structure (i.e., the edges of the tree)
in this graph. Hence, the game board consists of one large
graph, which contains separate graph representations of the
full game tree for each player (including the neutral player).
Such a graph can be constructed manually using (graph
vertices:{. . . }). Let i denote the unique index of a state
si ∈ S. Then, in the graph for player p (assume p = 0 for the
nature player), the index of the node that corresponds to si is
given by p × |S| + i. Without loss of generality, we assume
that the index of the initial game state is 0.

Thirdly, for every state si ∈ S and every player 1 ≤
p ≤ k, we define a region in the equipment that contains
all the indices of the vertices corresponding to states that
are in the information set of p when the true state is si.
More formally, for all 0 ≤ i < |S| and all 1 ≤ p ≤
k, we define a region named "InformationSet_i_p"
containing all the indices p × |S| + j for all j ∈ {j |
sj ∈ I(p, si)}. Such a region can be defined in a game
description using (regions "InformationSet_i_p"
{. . . }). Whenever the true state is si, this region allows us
to easily access all the vertices corresponding to the complete
information set for any given player p.

Fourthly, for every player 1 ≤ p ≤ k, we define a region in
the equipment named "Subgraph_p" that contains all the
indices of the vertices in that player’s respective subgraph,
i.e. all indices in {j | p × |S| ≤ j < (p + 1) × |S|}.
Such a region can be defined in a game description using
(regions "Subgraph_p" {. . . }). We similarly define a
region "Subgraph_0" for the first subgraph.

Note that the definitions of piece types, graphs, and regions
as detailed above do not yet have many semantics associated
with them. These statements largely serve to declare the
existence of various types of data, such that they may be
referenced (by their names) and used in the definitions of rules
as described in the subsequent subsections. Fig. 3 provides a
template for an equipment definition following the steps that
were just listed.

C. Defining the Start Rules
Due to Assumption 1, we know that every player’s in-

formation set for the initial game state contains only s0;

. . .
(equipment {
(piece "Marker" Neutral)
(piece "Marker" Each)
(board

(graph
vertices:{

// Vertices for tracking game state
{x1 y1} . . . {x|S| y|S|}
// Vertices for tracking first infoset
{x1 y1} . . . {x|S| y|S|}
. . .
// Vertices for tracking kth infoset
{x1 y1} . . . {x|S| y|S|}

}
)
use:Vertex

)
// For every state and every player, an infoset
// listing all the possible states
(regions "InformationSet_0_1" {. . .})
. . .
(regions "InformationSet_|S|_1" {. . .})
(regions "InformationSet_0_2" {. . .})
. . .
(regions "InformationSet_|S|_k" {. . .})
// Each player has a copy of the tree
(regions "Subgraph_0" {0..<|S| − 1>})
(regions "Subgraph_1" {|S|..<2× |S| − 1>})
. . .
(regions "Subgraph_k" {<k × |S|>..<(k + 1)× |S| − 1>})

})
. . .

Fig. 3. Template for the equipment definition of a Ludii game GL, modelling
an equivalent extensive-form game G with |S| different states and k players.
The expressions angled brackets are used for generality, but would be
replaced by the concrete result of the expression in any single concrete game
description. The values used for x- and y-coordinates only affect display in
Ludii’s graphical user interface, and are irrelevant in terms of semantics.

∀pI(p, s0) = {s0}. Hence, we start the game by placing a
marker for each player (including a neutral marker for the
nature player) on the vertex that represents the initial game
state in each player’s respective subgraph in the board. For
any player p, the index of this vertex is given by p × |S|,
assuming p = 0 for the nature player. Presence or absence of
markers on any site in a subgraph corresponding to a player p
must be hidden from all other players p′ ̸= p, to avoid leaking
information that those other players should not have access to.

Start rules that accomplish this setup for the initial
game state are provided in Fig. 4. Each of the (place
"Markerk" <x>) lines places a Marker for player k on
site x, marking the information set that player k believes the
game is in. In the initial state, every player’s information set
contains only a single state, thanks to Assumption 1. The
marker for k = 0 does not correspond to any particular player,
but is used to mark the true game state. The ludeme (set
Hidden (sites x) to:y) states that all sites in a region
x are set to be hidden (i.e., unobservable) to player(s) y.
The combination of all such lines in the figure ensures that
the first copy of the game tree (with index 0) is hidden to
all players, and every other copy is only observable by its
respective player.

More formally, for any Ludii game GL with these start rules,

. . .
(start {
(place "Marker0" 0)
(place "Marker1" <1× |S|>)
. . .
(place "Markerk" <k × |S|>)
(set Hidden
(sites "Subgraph_0") to:All)

(set Hidden
(sites "Subgraph_1") to:(player 2))

. . .
(set Hidden
(sites "Subgraph_1") to:(player k))

(set Hidden
(sites "Subgraph_2") to:(player 1))

(set Hidden
(sites "Subgraph_2") to:(player 3))

. . .
(set Hidden
(sites "Subgraph_2") to:(player k))

. . .
(set Hidden
(sites "Subgraph_k") to:(player k − 1))

})
. . .

Fig. 4. Start rules for a Ludii game GL, modelling an equivalent extensive-
form game G, with k players. The expressions to compute vertex indices in
angled brackets are used for generality, but would be replaced by the concrete
result of the expression in any single concrete game description.

the following statements hold in the initial game state:
• There is a piece of type Marker0 (not owned by any

player) on the vertex with index 0.
• For every player index P ∈ [1, . . . , k], there is a piece of

type MarkerP (owned by player P) on the vertex with
index P × |S|.

• No pieces are placed other than those mentioned above.
• All vertices and their contents in the region named
"Subgraph_0" are set to be hidden to all players. This
means that no player can observe that vertex 0 contains
a Marker0 piece. Similarly, none of the players can
observe that all other vertices in this region are empty.

• For every player index P ∈ [1, . . . , k], and every other
player index P ′ ∈ [1, . . . , k], with P ′ ̸= P , all vertices
in any region named "Subgraph_P" are hidden from
P ′. This means that every player P can only observe
vertices (and markers placed on them) in the region
named "Subgraph_P".

D. Defining the Play Rules

The play rules in Ludii define how to generate a list of legal
moves for any given current game state si. In our GL model,
where we aim to replicate the structure of the game tree of
the extensive-form game G, we may distinguish two primary
cases:

1) If si is a chance node, i.e. ι(si) = η, in Ludii a
regular player will be in control because Ludii does
not explicitly include a nature player. Hence, we should
generate only a single legal move such that the player
is forced to traverse the branch that the chance player
would have picked in G. This can be accomplished by

using the (random {. . . } {. . . }) ludeme, where the
first array contains a sequence of n weights, and the
second array contains a sequence of n move-generating
ludemes, for a chance node with n possible branches.
For example, (random { p, q, r } { A B C })
randomly selects one of the ludemes A, B, or C to gen-
erate the list of legal moves, with probabilities p

p+q+r ,
q

p+q+r , or r
p+q+r , respectively. The appropriate weights

to use can be derived from the nonzero probabilities
D(s, s′) as specified in G.

2) If si is not a chance node, i.e. ι(si) ̸= η, the mover ι(si)
should have one move corresponding to every branch
from si in the game tree of the extensive-form game
G. This can be implemented using an (or { . . . })
ludeme that wraps around other ludemes, each of which
generates one of the legal moves.

Without any knowledge of any general rules that may
determine how legal moves are computed from a game state
si in the extensive-form game G, it is necessary to explicitly
enumerate all game states and define the play rules separately
per state. One way to accomplish this is by using a chain of
(if C A B) ludemes, where:

• C is a condition of the form (= (where "Marker"
Neutral) i): this checks whether the Marker0 piece
is located on vertex i, and can hence be used to determine
whether or not the current game state is si.

• A is a ludeme that generates the moves in the case that
the condition of C is satisfied by the current game state
(i.e., if the current game state is si).

• B is a ludeme that generates the moves if the current
game state does not satisfy the condition of C; this can
again be a ludeme of the same (if C A B) form.

Suppose that there is some branch in the extensive-form
game tree of G that leads from a state si to a state sj . In the
corresponding Ludii game GL, we require a corresponding
move that has the following effects on the game state:

1) It should move the Marker0 piece, which should
currently be located on the vertex with index i, to the
vertex with index j. This enables us to continue tracking
the true game state.

2) For every player 1 ≤ p ≤ k, any Markerp pieces
currently on the board should be removed, and new
Markerp pieces should be placed on all vertices in the
InformationSet_j_p region. This enables us to let
every player know which information set it transitioned
into.

3) By default, Ludii reveals information about positions
that become empty. Because the above effects remove
some pieces from positions that should still remain hid-
den from many players, vertices should be appropriately
set to hidden again as they were originally set in the start
rules.

4) By default, Ludii updates the index of which player is
designated the mover after every move, by incrementing
it or resetting it to 1 after player k made a move. If this

results in a different player to move than the player ι(sj)
that should become the mover in sj , we need to include
an extra effect in the move that correctly sets the player
to move. Note that, if ι(sj) = η in G, it does not matter
which player is set to be the mover in Ludii, since we
only generate one legal move anyway that whichever
player is the mover will be forced to pick.

Suppose that such a state si has n legal moves. A straightfor-
ward way to present n different options to the player ι(si) is
to allow them to select one out of any of vertex 0 ≤ v < n,
and to specify appropriate consequences for each of those
“select” moves. These consequences should correspond to the
vth branch from si in the game tree of G, but otherwise do not
necessarily have any particular relationship with the specific
vertex v; selecting vertices is simply a mechanism through
which the player can distinguish between n different moves.

Fig. 5 depicts the specification of a move rule for a
single transition from si to sj . The (move Select (from
n) (then . . .)) ludeme defines a legal move where the
player may opt to select a vertex n, which will lead to
consequences as defined inside the (then . . .) ludeme.
These consequences correspond to the four types of effects
listed previously. The marker tracking the true game state
(hidden to all players) is moved by (fromTo (from i)
(to j)). The (remove (sites Occupied by:Pk))
ludemes each remove all markers for one player k from
the board, and each of the (add (piece k + 1) (to
(sites "InformationSet_j_k"))) ludemes similarly
places new markers to mark the new information set for a
player k. Note that there is an offset of +1 due to the presence
of the neutral piece in the game. As in Fig. 4, the (set
Hidden . . .) ludemes ensure that no player can observe
any information they should not be able to. Finally, the (set
NextPlayer (player ι(sj))) ludeme ensures that the
correct player to move is set in the subsequent game state.

E. Defining the End Rules

For each of the terminal game states st ∈ Ster in G, we
can define a separate end rule in GL that checks whether that
specific state has been reached by tracking the position of
the Marker0 piece, and assigns a vector of payoffs to the k
players as given by U(st) using the payoffs ludeme. Fig. 6
provides an example of such end rules for an example game
for k = 3 players with two terminal game states.

In the end rules, a ludeme of the form (if (A)
(payoffs . . .)) ensures that, as soon as a game state
is reached where the condition (A) holds, the game ter-
minates and payoffs are assigned to all players as per
the (payoffs . . .) ludeme. A condition of the form (=
(where "Marker" Neutral) x), as used in Fig. 6, is
true in any game state where there is a piece of type Marker0
on the vertex with index x. Given the construction of the
start and play rules described previously, this means that we
check whether we are in the state meant to represent state
sx from the original extensive-form game G. A ludeme of
the form (payoffs (payoff P1 x) (payoff P2 y)

. . .
(move Select (from n)

(then (and {
(fromTo (from i) (to j))
(remove (sites Occupied by:P1))
(remove (sites Occupied by:P2))
. . .
(remove (sites Occupied by:Pk))
(add (piece 2)

(to (sites "InformationSet_j_1")))
(add (piece 3)

(to (sites "InformationSet_j_2")))
. . .
(add (piece k + 1)

(to (sites "InformationSet_j_k")))
(set Hidden
(sites "Subgraph_0") to:All)

(set Hidden
(sites "Subgraph_1") to:(player 2))

. . .
(set Hidden
(sites "Subgraph_1") to:(player k))

(set Hidden
(sites "Subgraph_2") to:(player 1))

(set Hidden
(sites "Subgraph_2") to:(player 3))

. . .
(set Hidden
(sites "Subgraph_2") to:(player k))

. . .
(set Hidden
(sites "Subgraph_k") to:(player k − 1))

(set NextPlayer (player ι(sj)))
}))

)
. . .

Fig. 5. Ludeme generating a move corresponding to the nth branch from a
state si, leading to a state sj , in the game tree of an extensive-form game G
with k players. The player that should be the mover in the next state sj is
denoted by ι(sj)—except we replace it by any arbitrary integer in [1, k] if
ι(sj) = η.

(end {
(if (= (where "Marker" Neutral) 88)

(payoffs {
(payoff P1 -1)
(payoff P2 0.5)
(payoff P3 1)

})
)
(if (= (where "Marker" Neutral) 2077)

(payoffs {
(payoff P1 10)
(payoff P2 12)
(payoff P3 2020)

})
)

})

Fig. 6. Example end rules for an example game with k = 3 players, where
states s88 and s2077 are terminal states, with payoff vectors of [−1, 0.5, 1]
and [10, 12, 2020], respectively.

(payoff P3 z)) assigns payoffs of x, y, and z, to the first,
second, and third player, respectively.

IV. PROOF OF EQUIVALENCE

Based on the strategy for constructing a Ludii game GL for
any extensive-form game G as described above, we present

Theorem 1, which may intuitively be understood as stating
that it is possible to model any arbitrary finite extensive-form
game in L-GDL.

Theorem 1. Under Assumptions 1 and 2, for any arbitrary
extensive-form game G, a corresponding Ludii game GL con-
structed as described in Subsections III-A–III-E, is equivalent
to G in the sense that the following criteria are satisfied:

1) The game description of GL is a valid game description
according to the specification of L-GDL’s grammar [15].

2) There exists a one-to-one correspondence between tra-
jectories from the root node to any possible leaf node
in the game tree of G, and trajectories of play that
are possible from the initial game state in GL. More
concretely, this means that:

a) For every node s that is reachable from the root
node s0, including s0 itself, there exists an equiva-
lent game state in GL that is also reachable in the
same number of transitions from the initial game
state of GL.

b) For every node s in the game tree of GL where
ι(s) ̸= η (i.e., any node that is not a chance node),
the equivalent state in GL also has ι(s) as the
player to move.

c) For every node s in the game tree of GL where
ι(s) ̸= η, if there are n branches to n successors,
there are also n legal moves in the equivalent state
in GL.

d) For any chance node s that is reachable from the
root node s0 of the game tree of G, for every
possible s′ that has a probability D(s, s′) > 0 of
being the successor of s, there is also a probability
D(s, s′) that a transition to the equivalent state of
s′ in GL is the only legal transition in any arbitrary
trajectory that reaches the equivalent of s in GL.

e) For any terminal node s ∈ Ster in the game tree
of G, the equivalent state in GL is also terminal,
and assigns the same vector of payoffs U(s).

3) Any player 1 ≤ p ≤ k playing the Ludii game GL

cannot distinguish between any pair of states that are
the equivalents of two distinct nodes s, s′ if and only if
they share the same information set I(p, s) = I(p, s′).

These criteria are similar to those used for the proof of
universality for S-GDL [11].

Proof. By construction, the game description as detailed in
subsections III-A to III-E is a valid L-GDL description. As of
the public v1.1.17 release of Ludii—which first introduced
the (random . . .) and (payoffs . . .) ludemes—all of
the ludemes used are supported. This satisfies criterion 1.

The start rules of GL (see Fig. 4) ensure that, in the initial
game state, a piece of type Marker0 is placed on vertex 0,
and not on any other position. All moves that can possibly be
generated are of the form depicted in Fig. 5, which can only
affect the positions of Marker0 pieces through its (fromTo
(from i) (to j)) rule, which moves whichever piece

is at vertex i to vertex j. This means that the number of
Marker0 pieces cannot change; there must always be one,
and only its position can change due to (fromTo (from
i) (to j)) rules. For any particular value of i, such a
rule is only used in situations that satisfy the (= (where
"Marker" Neutral) i) condition, i.e. only if vertex i
currently contains the sole Marker0 piece. For any pair of
values i and j, if there is a branch from si to sj in the game
tree of G, it is also possible for there to be a legal move that
moves the Marker0 piece from vertex i to vertex j in GL;
such a move is either legal for sure if si is not a chance node,
or legal with probability D(si, sj) if si is a chance node. This
satisfies criterion 2a; the equivalent state of a node si can
always be identified as the one that has the Marker0 piece
on vertex i.

The move rules as described in Fig. 5 have, by construction,
been set up to ensure that the next player to move is set
to ι(sj)—or any arbitrary integer in [1, k] if ι(sj) = η—
whenever a move is made that moves the Marker0 piece
to vertex j—which means that the equivalent state of a node
sj is reached. This ensures that criterion 2b is satisfied for
every node except for the root node s0. Assumption 2 ensures
that the criterion is also satisfied for s0.

By construction, as described in Subsection III-D, for every
node si that is not a chance node, the equivalent state in GL has
its move rules defined by an (or { . . . }) rule that wraps
around n different rules, each of which generates exactly 1
legal move, such that n is the number of successors of si in
the game tree of G. This satisfies criterion 2c. Similarly, the
correct number of moves with correct probabilities D(s, s′)
as required by 2d are explicitly defined as described in
Subsection III-D.

The end rules as described in Subsection III-E explicitly
detect any game state in the Ludii game GL that is the
equivalent of a terminal node s ∈ Ster of the extensive-form
game G, and explicitly assign the corresponding payoffs vector
U(s). This satisfies criterion 2e.

By Assumption 1, there is only a single initial game state,
and every player is aware of that. Therefore, every player’s
information set for the root node contains only the root node;
∀p∈{1,...,k}I(p, s0) = {s0}. This is reflected by the start rules
described in Subsection III-C which, for every player p, place
a marker for that player—and only visible to that player—in
the subgraph used to represent the state space of G for that
player. Every move that can be applied in any trajectory is of
the form illustrated by Fig. 5, which ensures that:

1) Every player p can only ever observe markers on vertices
of “its own” subgraph.

2) Let j denote the vertex that contains the neutral
marker—hidden from all players—in the first subgraph.
For every player p, within that player’s “own” subgraph,
there is always a marker on every vertex that represents
any of the nodes in the information set I(p, sj) for that
player in that state.

This means that, for any pair of nodes that is in the same
information set for a player in the game tree of G, the pair

of equivalent game states in GL are also indistinguishable
from each other from that player’s perspective (due to the
arrangement of markers on vertices visible to that player being
identical). Note that the move rules as described in Fig. 5
were deliberately set up such that players always select vertex
n to pick the nth move in a list of legal moves, irrespective
of which vertices are subsequently affected by that move. It
might have been more intuitive to directly select the vertex
corresponding to the node in the extensive-form game tree to
transition into, but this could reveal additional information that
the player should not have access to. With this, criterion 3 is
also satisfied and the proof is complete.

V. DISCUSSION

The main topic of this paper, with Theorem 1 and its proof,
is to prove that L-GDL is sufficiently expressive to model
the equivalent of any arbitrary finite extensive-form game.
A related question of potential interest is the converse of
Theorem 1: is any game that can be modelled in L-GDL
equivalent to a finite extensive-form game? This question
can be answered in the negative with counterexamples. For
example, the game of Mu Torere (which has been implemented
in Ludii) is known to go on indefinitely under perfect play
[16], which makes it an example of a game with an infinitely-
sized game tree that can be implemented in L-GDL. Hence,
while L-GDL is sufficiently expressive to model any game of
the class considered in Theorem 1, it is not restricted to that
class.

VI. CONCLUSION

Ludii’s game description language (L-GDL) has primarily
been designed to be easy to use for game designers, with a
focus on facilitating the design of board games and similar
abstract games. In practice, its count of over 1000 distinct
game descriptions2 (which far exceeds the game counts in
official repositories of many other systems with GDLs, such
as S-GDL [2], [3], RBG [4], and GVGAI [8]) has already
demonstrated its flexibility and generality. In this paper, we
have also proven its generality from a theoretical angle,
demonstrating that it is possible to write an equivalent game
in L-GDL for any arbitrary finite extensive-form game [12].
Two assumptions (Assumptions 1 and 2) on the structure of
extensive-form games were made to simplify the proof, but
both assumptions are without loss of generality. Simultaneous-
move games were not considered explicitly, but are implicitly
also covered by the proof due to the possibility of modelling
any simultaneous-move game as a sequential one with hidden
information [14]. This provides a significant extension of
an earlier proof [6] by including stochastic and imperfect-
information games (and, implicitly, also simultaneous-move
games), and means that the expressiveness of L-GDL matches
that proven by Thielscher [11] for S-GDL.

This result suggests that we can opt to use Ludii over S-
GDL in GGP research for some of its other advantages, such

2https://ludii.games/library.php

as computational efficiency [6] and ease of use, without a
loss in expressiveness. While the somewhat convoluted way
of defining games used for the theoretical proof is unlikely
to be an efficient way of implementing many “real” games
in practice, it may be a fruitful starting point for designing
synthetic game trees for targeted research into the relations
between certain game tree characteristics and the effectiveness
of different algorithms [17], [18] within the same framework
and API (Ludii) that also supports many real games.

In this paper, we primarily focused on the expressiveness
of the L-GDL language. This is one of the primary types of
properties that is typically considered of importance for GDLs
[4], [11]. However, there are also other interesting theoretical
properties of GDLs and game descriptions, which may be
further explored (for the case of L-GDL) in future work. For
example, in future work it would be interesting to examine
whether or not L-GDL is Turing complete, and what the
complexity is of deciding whether or not any given L-GDL
description satisfies certain properties such as playability or
well-formedness [19].

ACKNOWLEDGMENT

This research is funded by the European Research Council
as part of the Digital Ludeme Project (ERC Consolidator Grant
#771292).

REFERENCES

[1] J. Pitrat, “Realization of a general game-playing program,” in IFIP
Congress (2), 1968, pp. 1570–1574.

[2] M. R. Genesereth, N. Love, and B. Pell, “General game playing:
Overview of the AAAI competition,” AI Magazine, vol. 26, no. 2,
pp. 62–72, 2005. [Online]. Available: http://www.aaai.org/ojs/index.
php/aimagazine/article/view/1813

[3] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “Gen-
eral game playing: Game description language specification,” Stanford
Logic Group, Tech. Rep. LG-2006-01, 2008.

[4] J. Kowalski, M. Maksymilian, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” in Proceedings of the 33rd AAAI Conference on Artificial
Intelligence. AAAI Press, 2019, pp. 1699–1706.

[5] C. Browne, M. Stephenson, É. Piette, and D. J. N. J. Soemers, “A
practical introduction to the Ludii general game system,” in Advances in
Computer Games. ACG 2019, ser. Lecture Notes in Computer Science,
T. Cazenave, H. J. van den Herik, A. Saffidine, and I.-C. Wu, Eds., vol.
12516. Springer, Cham, 2020, pp. 167–179.

[6] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii – the ludemic general game system,” in
Proceedings of the 24th European Conference on Artificial Intelligence
(ECAI 2020), ser. Frontiers in Artificial Intelligence and Applications,
vol. 325. IOS Press, 2020, pp. 411–418.

[7] T. Schaul, “An extensible description language for video games,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 4, pp. 325–331, Dec. 2014.

[8] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game AI: A multitrack framework for evaluating
agents, games, and content generation algorithms,” IEEE Transactions
on Games, vol. 11, no. 3, pp. 195–214, 2019.

[9] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro,
F. Petroni, H. Küttler, E. Grefenstette, and T. Rocktäschel, “Minihack
the planet: A sandbox for open-ended reinforcement learning research,”
in Advances in Neural Information Processing Systems, 2021.

[10] M. Thielscher, “A general game description language for incomplete
information games,” in Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence. AAAI, 2010, pp. 994–999.

[11] ——, “The general game playing description language is universal,”
in Proceedings of the Twenty-second International Joint Conference on
Artificial Intelligence, IJCAI-11, 2011, pp. 1107–1112.

[12] E. Rasmusen, Games and Information: An Introduction to Game Theory,
4th ed. Oxford, England: Blackwell Publishing, 2007.

[13] C. Browne, “A class grammar for general games,” in Advances in
Computer Games, ser. Lecture Notes in Computer Science, A. Plaat,
W. Kosters, and J. van den Herik, Eds., vol. 10068, Leiden, 2016, pp.
167–182.

[14] J. Watson, Strategy: An Introduction to Game Theory, 3rd ed. New
York: W. W. Norton & Company, 2013.

[15] C. Browne, D. J. N. J. Soemers, É. Piette, M. Stephenson,
and W. Crist, “Ludii language reference,” ludii.games/downloads/
LudiiLanguageReference.pdf, 2020.

[16] M. Ascher, “Mu Torere: An analysis of a Maori game,” Mathematics
Magazine, vol. 60, no. 2, pp. 90–100, 1987.

[17] R. Ramanujan, A. Sabharwal, and B. Selman, “Understanding sampling
style adversarial search methods,” in Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence, 2010, pp. 474–483.

[18] ——, “On the behaviour of UCT in synthetic search spaces,” in ICAPS
2011 Workshop on Monte-Carlo Tree Search: Theory and Applications,
2011.

[19] A. Saffidine, “The game description language is Turing complete,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 4, pp. 320–324, 2014.

